Riccati techniques and oscillation for self-adjoint matrix Hamiltonian systems
نویسندگان
چکیده
منابع مشابه
Oscillation Results for Second Order Self-adjoint Matrix Differential Systems
on [0,∞), where Y (t), P (t) and Q(t) are n × n real continuous matrix functions on [0,∞) with P (t), Q(t) symmetric and P (t) positive definite for t ∈ [0,∞) (P (t) > 0, t ≥ 0). A solution Y (t) of (1.1) is said to be nontrivial if det Y (t) 6= 0 for at least one t ∈ [0,∞) and a nontrivial solution Y (t) of (1.1) is said to be prepared (selfconjugated) if Y ∗(t)P (t)Y ′(t)− Y ∗′(t)P (t)Y (t) ≡...
متن کاملOscillation Criteria for Hamiltonian Matrix Difference Systems
We obtain some oscillation criteria for the Hamiltonian difference system (AY{t) = B{t)Y{t+\) + C{t)Z{t), I AZ{t) = -A{t)Y{t + 1) B*{t)Z{t), where A, B, C, Y, Z are dxd matrix functions. As a corollary, we establish the validity of an earlier conjecture for a second-order matrix difference system.
متن کاملSelf-adjoint, globally defined Hamiltonian operators for systems with boundaries
For a general self-adjoint Hamiltonian operator H0, defined on the Hilbert space L (IRn), we determine the set of all self-adjoint Hamiltonians H on L(IRn) that (dynamically) confine the system to an open set S ⊂ IRn while reproducing the action of H0 on an appropriate domain. We propose strategies for constructing these Hamiltonians explicitly and for n = 1 we prove that an important class amo...
متن کاملSome Oscillation Results for Linear Hamiltonian Systems
The purpose of this paper is to develop a generalized matrix Riccati technique for the selfadjoint matrixHamiltonian systemU′ A t U B t V , V ′ C t U−A∗ t V . By using the standard integral averaging technique and positive functionals, new oscillation and interval oscillation criteria are established for the system. These criteria extend and improve some results that have been required before. ...
متن کاملOscillation of Linear Hamiltonian Systems
We establish new oscillation criteria for linear Hamiltonian systems using monotone functionals on a suitable matrix space. In doing so we develop new criteria for oscillation involving general monotone functionals instead of the usual largest eigenvalue. Our results are new even in the particular case of self-adjoint second order differential systems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2009
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2009.06.004